Linear Algebra Operations in NumPy (numpy.linalg Module)
The numpy.linalg
module in NumPy provides various linear algebra functions essential for mathematical and engineering applications.
1. Importing NumPy
Before using NumPy's linear algebra functions, import the module.
import numpy as np
2. Matrix Multiplication
Matrix multiplication is performed using np.matmul()
or the @
operator.
A = np.array([[1, 2], [3, 4]]) B = np.array([[5, 6], [7, 8]]) result = np.matmul(A, B) print(result) # Output: # [[19 22] # [43 50]]
3. Matrix Inversion
The inverse of a matrix can be calculated using np.linalg.inv()
.
A = np.array([[1, 2], [3, 4]]) inverse_A = np.linalg.inv(A) print(inverse_A) # Output: # [[-2. 1. ] # [ 1.5 -0.5]]
4. Determinant of a Matrix
The determinant of a matrix is computed using np.linalg.det()
.
A = np.array([[1, 2], [3, 4]]) determinant = np.linalg.det(A) print(determinant) # Output: -2.0
5. Eigenvalues and Eigenvectors
Eigenvalues and eigenvectors of a matrix can be calculated using np.linalg.eig()
.
A = np.array([[4, -2], [1, 1]]) eigenvalues, eigenvectors = np.linalg.eig(A) print(eigenvalues) print(eigenvectors) # Example Output: # [3. 2.] # [[ 0.894 0.707] # [ 0.447 -0.707]]
6. Solving Linear Equations
Linear equations of the form Ax = B can be solved using np.linalg.solve()
.
A = np.array([[3, 1], [1, 2]]) B = np.array([9, 8]) x = np.linalg.solve(A, B) print(x) # Output: [2. 3.]
Conclusion
The numpy.linalg
module provides essential functions for performing linear algebra operations such as matrix multiplication, inversion, determinant calculation, eigenvalue computation, and solving linear equations.