Replacing or Removing Missing Values in NumPy
NumPy provides methods to handle missing values (np.nan
) by replacing or removing them.
1. Importing NumPy
Before handling missing values, import NumPy.
import numpy as np
2. Replacing Missing Values
Use np.nan_to_num()
or indexing to replace np.nan
values.
Using np.nan_to_num()
arr = np.array([1, 2, np.nan, 4, np.nan, 6]) replaced_arr = np.nan_to_num(arr, nan=0) print(replaced_arr) # Output: [1. 2. 0. 4. 0. 6.]
Replacing NaN Values with Mean
arr = np.array([1, 2, np.nan, 4, np.nan, 6]) mean_value = np.nanmean(arr) arr[np.isnan(arr)] = mean_value print(arr) # Example Output: [1. 2. 3.25 4. 3.25 6.]
3. Removing Missing Values
Use boolean indexing to filter out np.nan
values.
arr = np.array([1, 2, np.nan, 4, np.nan, 6]) cleaned_arr = arr[~np.isnan(arr)] print(cleaned_arr) # Output: [1. 2. 4. 6.]
4. Conclusion
NumPy provides efficient ways to replace or remove missing values using np.nan_to_num()
and filtering techniques.