Replacing or Removing Missing Values in NumPy
NumPy provides methods to handle missing values (np.nan) by replacing or removing them.
1. Importing NumPy
Before handling missing values, import NumPy.
import numpy as np
2. Replacing Missing Values
Use np.nan_to_num() or indexing to replace np.nan values.
Using np.nan_to_num()
arr = np.array([1, 2, np.nan, 4, np.nan, 6])
replaced_arr = np.nan_to_num(arr, nan=0)
print(replaced_arr)
# Output: [1. 2. 0. 4. 0. 6.]
Replacing NaN Values with Mean
arr = np.array([1, 2, np.nan, 4, np.nan, 6])
mean_value = np.nanmean(arr)
arr[np.isnan(arr)] = mean_value
print(arr)
# Example Output: [1. 2. 3.25 4. 3.25 6.]
3. Removing Missing Values
Use boolean indexing to filter out np.nan values.
arr = np.array([1, 2, np.nan, 4, np.nan, 6])
cleaned_arr = arr[~np.isnan(arr)]
print(cleaned_arr)
# Output: [1. 2. 4. 6.]
4. Conclusion
NumPy provides efficient ways to replace or remove missing values using np.nan_to_num() and filtering techniques.